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Abstract

In a shear ¯ow, a small sphere may experience a lift force due to ¯uid inertia. Most previous workers
assumed that the particle was stationary so that they could treat the ¯uid motion as steady. In spite of
this, the results of previous analyses have generally been applied to problems in which particles move in
an unsteady fashion. This paper presents the results of singular perturbation calculations of the lift on a
sphere in a linear shear ¯ow. The velocity of the sphere oscillates sinusoidally in time. Although the
problem is idealized, the results provide some physical understanding of the e�ects of unsteadiness and
the frequency regime in which one may assume quasisteady conditions. # 1999 Elsevier Science Ltd. All
rights reserved.
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1. Introduction

Small particles can experience lift forces as a result of ¯uid inertia. Lift forces can cause
particles to cross streamlines in laminar ¯ows. There are a number of engineering applications
where lift forces are known or suspected to play an important role. Williams et al. (1996)
showed that the lift force plays a role in ®eld ¯ow fractionation. Asmolov (1995) showed that
the lift force on the particles in a dusty gas ¯ow plays an important role in determining the
point of ¯ow separation over blunt bodies. Asmolov and Manuilovich (1998) argued that the
lift force may play a role in the transition to turbulence for dusty gas boundary layers. Zeng
et al. (1993) discussed the role of lift forces in bubble detachment from solid surfaces in ¯ow
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boiling. Lift forces also play a role in the deposition on and accumulation of particles near
solid surfaces in turbulent ¯ows (Kallio and Reeks, 1989; McLaughlin, 1989; Chen and
McLaughlin, 1996).
Most of the existing theoretical work on lift forces for small particles makes use of

perturbation expansions based on the particle Reynolds numbers. Sa�man (1965) used singular
perturbation theory to derive an expression for the lift force acting on a small sphere in an
unbounded linear shear ¯ow. He treated the Reynolds numbers of the particle based on the
shear rate and the slip velocity as small parameters.
Cox and Brenner (1968) considered the lift on small particles in wall-bounded ¯ows. They

showed that, provided that the particle was close enough to the wall, one could use regular
perturbation theory to compute the leading order expression for the lift force. Cox and Hsu
(1977) derived results for the lift force on a small particle in a wall-bounded parabolic shear
¯ow. Their analysis is valid if the wall lies within the ``inner'' region of the disturbance ¯ow
created by the particle. In the inner region, inertial e�ects are small compared with viscous
e�ects.
Asmolov (1998) used singular perturbation methods to extend previous results on parabolic

channel ¯ows to higher Reynolds numbers. His paper contains references to other work on lift
forces on wall-bounded ¯ows.
Sa�man's formulation of the problem for an unbounded linear shear ¯ow is general.

However, to obtain quantitative results, he assumed that the particle Reynolds number based
on the shear rate, ReG, and the particle Reynolds number based on the slip velocity, Res,
satis®ed the inequality Re 1/2G >>Res. Asmolov (1990) and McLaughlin (1991, 1993) removed
this restriction and included the e�ect of a distant wall on the lift force. Their treatment of the
wall does not require that the wall must lie within the inner region of the particle disturbance
¯ow. Thus, their results generalize the results of Cox and Hsu.
In many applications of interest, the motion of the particle and/or the ¯uid is unsteady. As

an example, in their stability analysis, Asmolov and Manuilovich (1998) assumed that the
wavelength of the Tollmien±Schlichting wave was of the order of the local thickness of the
boundary layer and small compared with the characteristic distance from the leading edge of a
plate. This means that the shear rate varies in time more slowly than the disturbance slip
velocity. They argued that, in the critical layer of the TS wave, it may be important to consider
the e�ect of unsteadiness on the lift force. Since the time dependence of the TS wave is
approximately sinusoidal, the results of the present paper are relevant to the analysis presented
by Asmolov and Manuilovich.
In spite of the fact that the various lift force formulas are often used in situations where the

shear ¯ow and/or particle motion are unsteady, virtually all previous work on lift forces has
treated both the ¯ow and the motion of the particle as steady. An exception is the work of
Miyazaki et al. (1995). They developed an induced force ®eld formulation that can be used to
treat unsteadiness. They presented results for the stationary case and the high frequency limit
and showed, in the former case, that their result was consistent with Sa�man's result.
In the present paper, results will be derived for the lift on a spherical particle that oscillates

along the direction of simple shear ¯ow. Conventional singular perturbation methods will be
used to obtain the results. An analytical result that is consistent with Miyazaki et al.'s result
will be derived in the high frequency limit. The role and signi®cance of various length scales
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will be discussed and the regime in which the quasisteady assumption is accurate will be
identi®ed.
Lovalenti and Brady (1993) considered the force on a sphere in a uniform ¯ow with small

amplitude oscillations at ®nite Reynolds numbers. However, in this case, the lift force on the
particle vanishes. Their work complements the present paper in that they provided results for
the time-dependent drag on the sphere.

2. Review of Sa�man's problem

In this section, Sa�man's analysis of the lift on a small particle in a steady shear ¯ow will be
brie¯y discussed. Sa�man derived the lowest order expression for the lift acting on a rigid
sphere in a steady, unbounded linear shear ¯ow. Sa�man assumed that the sphere moved
parallel to the streamlines of the undisturbed ¯ow, but with a di�erent velocity.
Several Reynolds numbers are needed to characterize the disturbance ¯ow created by the

sphere. One Reynolds number, Res, is based on the sphere diameter and the di�erence between
the velocity of the center of the sphere and the undisturbed velocity of the ¯uid at the same
point:

Res � jusjdn
�1�

where d is the diameter of the sphere and n is the kinematic viscosity of the ¯uid. A second
Reynolds number, ReG, is based on the sphere diameter and the local shear rate of the
undisturbed ¯ow:

ReG � jGjd
2

n
�2�

where G is the local shear rate of the mean ¯ow. (It is assumed that the mean ¯ow is
unidirectional for simplicity.) In general, one would need an additional Reynolds number based
on the angular velocity of the sphere. However, if the sphere is torque-free, one can relate the
angular velocity to the local shear rate.
Sa�man assumed that ReG and Res are both small and that the ratio Re 1/2G /Res is large

compared with unity. He obtained the following expression for the lift force:

Fl � 6:46ma2us

�������
jGj
n

r
sign�G� �3�

In Eq. (3), m is the dynamic viscosity of the ¯uid, a is the radius of the sphere, and ÿuse3 is the
velocity of the sphere's center relative to the undisturbed ¯uid. The undisturbed ¯uid velocity is
Gxe3. The quantity us will be referred to as the ``slip velocity'' in the rest of this paper. If
Gvs>0, the lift force points in the positive x-direction. If the sphere is not constrained by
another force, it will migrate in the positive x-direction. Sa�man assumed that the migration
velocity is small enough that it may be neglected.
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The Sa�man lift force is caused by a transverse ¯ow that originates at large distances from
the sphere in an Oseen-like region. In this region, the magnitude of the convective term in the
Navier±Stokes equation is comparable with the magnitude of the viscous term. The length that
characterizes the Oseen-like region is the Sa�man length,

LG � n
jGj
� �1=2

�4�

For Sa�man's analysis to be valid, the Sa�man length must be large compared with the
particle diameter but small compared to the Stokes length, Ls, de®ned by

Ls � n
jusj �5�

With the above assumptions, a singular perturbation expansion shows that the lift force may
be obtained to leading order by approximating the sphere by a point force. The singular
perturbation expansion considers an inner region in which the radial distance from the center
of the sphere, r, is O(a), and an outer region in which r is O(LG). The velocity of the ¯uid, v 0,
may be written as

v0 � U� v �6�
where U is the undisturbed ¯uid velocity and v is the disturbance created by the sphere. For
the problem of interest, in a frame of reference in which the sphere is at rest at x=0,

U � �Gx� us�e3 �7�

In the outer region, one linearizes the Navier±Stokes equation in the disturbance ¯ow and
neglects the contribution to the convective term involving us. The latter approximation is valid
provided that LG /Ls<<1. One then solves the following linearized form of the Navier±
Stokes equation for the disturbance velocity, v:

Gx
@v

@z
� Gu1e3 � ÿ 1

r
rp� nr2vÿ F

r
d�r�e3 �8�

Asmolov (1990) and McLaughlin (1991) removed the restriction on the relative sizes of the two
Reynolds numbers by including an Oseen approximation to the convective term involving the
slip velocity in the linearized Navier±Stokes equation. The lift force may be written in the
following form:

Fl � 9

p
ma2us

�������
jGj
n

r
J�E�sign�G� �9�

where J is a dimensionless function of the dimensionless parameter E de®ned by

E � Re1=2G

Res
sign�Gus� �10�
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McLaughlin calculated J and found that it goes to zero as E goes to zero. The Sa�man formula
over-estimates the magnitude of J for all ®nite values of E. In the limit E>>1, J
monotonically increases to the value 2.254 (to four digits) and Eq. (9) reduces to Eq. (3).

3. Formulation of the problem

Let us consider a rigid sphere that executes simple harmonic motion in the z-direction in a
steady linear shear ¯ow u= Gxe3. It is convenient to pose the problem in a frame of reference
in which the sphere is stationary. The equation for the disturbance ¯ow created by the particle,
v, is

@v

@t
� Gx

@v

@z
� Gu1e3 � ÿ 1

r
rp� nr2vÿ F

r
d�r�e3 �11�

where

F � ~Feÿiot �12�

v � ~veÿiot �13�

p � ~peÿiot �14�
and it is understood that one must take the real part of v, p and F to obtain the physical
values. In deriving Eq. (11), the Sa�man assumption, vEv>>1, is made. In the more general
case where vEv= O(1), the uniform ¯ow term, us, in Eq. (7) introduces a nonlinear coupling
between di�erent frequency components in the disturbance ¯ow created by the particle.
However, in the regime considered by Sa�man, the di�erent frequency components are
uncoupled.
One may rewrite Eq. (11) in the following form:

ÿio~v� Gx
@~v

@z
� G~u1e3 � ÿ 1

r
r ~p� nr2~vÿ

~F

r
d�r�e3 �15�

The ¯ow is assumed to be incompressible,

r � v � r � ~v � 0 �16�
For an unbounded ¯ow, one can use the Fourier transform technique devised by Sa�man
(1965) to obtain the lift force from Eq. (11). Sa�man pointed out that it is not necessary to
solve Eq. (8) to obtain the lift force. One need only calculate the x-component of the velocity
at the origin. In essence, the transverse ¯ow looks like a uniform ¯ow in the x-direction to the
particle. To obtain the lift force from the velocity, one uses the Stokes drag law.
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The time-dependence of the ¯ow introduces a third length, Lo:

Lo � n
o

� �1=2

�17�

The character of the disturbance ¯ow depends on the ratio Lo/LG in the limit vEv>>1. The
limit Lo/LG>>1 may be thought of as the limit in which the oscillation period is very large
compared with the viscous time scale. If Lo/LG>>1, the disturbance ¯ow should be the same
as in the steady problem considered by Sa�man. However when the ratio is order unity,
deviations from the steady-state result may be anticipated. Provided that Lo>>a, FÄ may be
approximated by the steady Stokes drag law:

~F � ÿ6pma~us �18�

where us= use
ÿ iot.

If the condition vEv>>1 is not satis®ed, one must include a convective term involving us
in Eq. (15). This introduces an explicit time dependence in the coe�cient of the disturbance
velocity. For vEv>>1, one can use Floquet theory to compute the leading corrections in
the small parameter 1/vEv. However, for values of vEv that are order unity, one must use
numerical methods to solve the problem. Therefore, this paper will present a result for the
Fourier transform of the lift force only in the Sa�man limit. In the Sa�man regime, it is
possible to express the Fourier transform in terms of the dimensionless parameter o/G (or
LG/Lo).

4. Solution for an unbounded ¯uid

In this section, the solution of Eq. (15) for the case of an unbounded ¯uid will be obtained.
The mathematical manipulations used to obtain the solution follow Sa�man (1965) and
McLaughlin (1991). It is convenient to introduce the Fourier transforms of the velocity ®eld
and the pressure ®eld:

~v �
�1
ÿ1

�1
ÿ1

�1
ÿ1

~uei�k1x�k2y�k3z�dk; �19�

and

~p �
�1
ÿ1

�1
ÿ1

�1
ÿ1

~Pei�k1x�k2y�k3z�dk: �20�

By substituting the Fourier transforms in Eqs. (19) and (20) into Eq. (15), one can obtain an
ordinary di�erential equation for uÄ which takes the form

ÿio~u � ÿik ~P=rÿ nk2~uÿ G ~u1e3 � Gk3
@~u

@k1
ÿ

~F

8p3r
e3 �21�
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Using the incompressibility condition, k�uÄ =0, the expression for uÄ1 can now be written in the
form

~u1 � 3

4p2
na~usk3
Gk2

�1
0

e�c
0ÿc��zk3 � k1� dz �22�

where

c0 ÿ c � ÿ n
3G

k23z
3 ÿ n

G
k1k3z

2 ÿ n
G
k2z� io

G
z �23�

The expression for uÄ1 in Eq. (22) is valid regardless of the sign of Gk3. The expression on the
right hand side of Eq. (23) is identical to the expression used by Sa�man except for the last
term.
If the expression for uÄ1 in Eq. (22) is substituted into Eq. (19), the values of the disturbance

¯ow velocity can be calculated at any point in space. As r=(x 2+y 2+ z 2)1/2 approaches zero,
the disturbance ¯ow must approach that of a Stokeslet solution, and, in order to determine the
inertial migration velocity, it is necessary to compute the di�erence between the disturbance
¯ow and a Stokeslet ¯ow and take the limit in which r goes to zero. The manipulations needed
to obtain the inertial migration velocity are the same as those described by Sa�man (1965) and
McLaughlin (1991). When the dimensionless wavevector, q=(n/G)1/2k, is introduced, it can be
shown that

~Fl � 9

2p
ra2 ~us�Gn�1=2I�O� �24�

where I is the four-dimensional integral that is de®ned below:

I �
�1
ÿ1

�1
ÿ1

�1
ÿ1

�1
ÿ1

z
q23
q2
ÿ q1q3�2q1q3 � zq23�

q4

( )
� i

q1q3
q4

O

" #
eÿ�q

2
3
z3=3�q1q3z2�q2z�eiOz dz dq;

�25�
and O= o/G. Integration over vqv yields I=2J, where

J � p1=2

4

�2p
0

�1
0

�1
0

"
zfs2 ÿ 2s2�1ÿ s2� cos2 fÿ zs3�1ÿ s2�1=2 cosfgAÿ3

� 2iOAÿ1s�1ÿ s2�1=2 cosf
#
eiOz dzds df �26�

In Eq. (26),

A2 � s2z3

3
� s�1ÿ s2�1=2 cosfz2 � z �27�

In the above equations, s=cosy and f and y denote the angular coordinates in a spherical
coordinate system in Fourier space. The symbol J is introduced to facilitate comparisons with
McLaughlin's (1991) work.
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In general, the integrals in Eq. (26) must be evaluated numerically. First, the asymptotic
limits in which O<<1 and O>>1 will be explored. The regime O>>1 has an upper
bound because of the restriction o<< n/a 2.
When the integral over vqv is performed, the expression for I in Eq. (25) can be written as

I � p1=2

2

�2p
0

�1
0

�I1fs2 ÿ 2s2�1ÿ s2� cos2 fg ÿ I2s
3�1ÿ s2�1=2 cosf� 2iI3s�1ÿ s2�1=2

� cosf�dsdf �28�

where

I1�s;f� �
�1
0

zAÿ3eiOz dz �29�

I2�s;f� �
�1
0

z2Aÿ3eiOz dz �30�

I3�s;f� �
�1
0

OAÿ1eiOz dz �31�

When O<<1, it is straightforward to expand the expression of I in powers of O. The
coe�cients of the expansion are dimensionless integrals that are evaluated numerically. The
result, to ®rst order, is

J � 2:254� 3:894Oi �32�
When O=0, the result in Eq. (32) reduces to Sa�man's result.
To obtain the asymptotic behavior of I1, I2 and I3 for O>>1, it is convenient to introduce

a new variable: x= zO. Then,

A � x
O

1� xs�1ÿ s2�1=2 cosf
O

� x2s2

3O2

 !" #1=2

�33�

and the leading order terms in the expansions of I1 and I3 are

I01 � Oÿ1=2P �34�
and

I03 � O1=2P �35�
where

P �
�1
0

xÿ1=2eix dx � p
2

� �1=2

�1� i� �36�
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while I20Oÿ3/2. The integral of the term proportional to I 03 with respect to f yields 0. Thus,
one has to evaluate the ®rst order term:

I13 � O1=2

�1
0

1� xs�1ÿ s2�1=2 cosf
O

 !ÿ1=2
ÿ1

24 35xÿ1=2eix dx �37�

If one integrates by parts and makes an expansion in powers of Oÿ1, one obtains

I13 �
1

4i
Oÿ1=2Ps�1ÿ s2�1=2 cosf �38�

Table 1
Numerical results for J

O Jr Ji

0.000 2.254 0.000
0.001 2.254 0.003886
0.010 2.252 0.03857
0.100 2.159 0.3327

0.200 1.989 0.556
0.300 1.807 0.699
0.400 1.634 0.785

0.500 1.477 0.830
0.600 1.340 0.849
0.700 1.221 0.850

0.800 1.122 0.844
0.900 1.033 0.822
1.000 0.960 0.801

1.100 0.896 0.777
1.200 0.842 0.753
1.300 0.796 0.729
1.400 0.756 0.706

1.500 0.721 0.684
1.600 0.690 0.663
1.700 0.663 0.643

1.800 0.640 0.624
1.900 0.618 0.607
2.000 0.599 0.591

2.500 0.526 0.525
3.000 0.477 0.476
3.500 0.439 0.440
4.000 0.410 0.410

5.000 0.366 0.366
7.000 0.309 0.310
8.000 0.288 0.288

9.000 0.271 0.271
10.000 0.258 0.258
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Substituting the expressions for I 01 and I 13 into the equation for I and integrating with respect
to f and s yields

I � 7p2

30�2O�1=2 �1� i� �39�

or

J � 7p2

60�2O�1=2 �1� i� �40�

which is consistent with the numerical results to be presented. The results in Eqs. (39) and (40)
are consistent with the high frequency results presented by Miyazaki et al. (1995).

Fig. 1. Real part of J compared with asymptotic approximations.
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When O is O(1), I must be evaluated numerically. The expression for I in Eq. (28) was
evaluated by numerical integration. The results for J= I/2 are given in Table 1.
Figures 1 and 2 show the ``exact'' numerical results for the real and imaginary parts of J as

well as the asymptotic forms for small and large O.
In applications, it is often convenient to have an analytical ®t for the lift force. Both the real

and imaginary parts of J may be approximated by a ®t of the following form:

Jr;i � a0 � a1O� a2O2 � a3O3 � a4O7=2

1� a5O� a6O2 � a7O3 � a8O4
�41�

Fig. 2. Imaginary part of J compared with asymptotic approximations.
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The constants in Eq. (41) are given in Table 2 for the real and imaginary parts of J. The
largest errors of the ®t equations are 0.008 in magnitude for the real part and 0.0014 for the
imaginary part.

5. Conclusion

The main results of this paper are the values of J= I/2 given in Table 1. These values and
Eq. (24) determine the lift force on a sphere. The results are valid in the strong shear regime
considered by Sa�man (Re 1/2G >>Res). It is also assumed that the characteristic length Lo is
large compared with the diameter of the sphere. The e�ect of unsteadiness can be characterized
in terms of Lo and the Sa�man length, LG. For Lo<<LG, the lift force is well approximated
by the Sa�man formula. However, when Lo is comparable to or smaller than LG, the lift force
is smaller in magnitude and out of phase with the force that one would predict from Sa�man's
formula.
The lift force arises from ¯uid motion at large distances from the sphere. The Oseen-like

form in Eq. (11) is linear in the disturbance ¯ow. Thus, the monochromatic results reported in
this paper could be superposed to obtain the lift force for spheres executing more complicated
unidirectional motions.
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Table 2
Constants in ®ts for Jr,i

ai Jr Ji

a0 2.254 0
a1 4.528 3.378
a2 ÿ2.378 1.391
a3 ÿ0.648 ÿ0.575
a4 2.079 1.139
a5 2.009 0.523
a6 4.048 5.199

a7 ÿ3.545 ÿ1.396
a8 2.554 1.399
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